Szeretettel köszöntelek a A Csodálatos Világűr-és a Föld közösségi oldalán!
Csatlakozz te is közösségünkhöz és máris hozzáférhetsz és hozzászólhatsz a tartalmakhoz, beszélgethetsz a többiekkel, feltölthetsz, fórumozhatsz, blogolhatsz, stb.
Ezt találod a közösségünkben:
Üdvözlettel,
A Csodálatos Világűr-és a Föld vezetője
Amennyiben már tag vagy a Networkön, lépj be itt:
Szeretettel köszöntelek a A Csodálatos Világűr-és a Föld közösségi oldalán!
Csatlakozz te is közösségünkhöz és máris hozzáférhetsz és hozzászólhatsz a tartalmakhoz, beszélgethetsz a többiekkel, feltölthetsz, fórumozhatsz, blogolhatsz, stb.
Ezt találod a közösségünkben:
Üdvözlettel,
A Csodálatos Világűr-és a Föld vezetője
Amennyiben már tag vagy a Networkön, lépj be itt:
Szeretettel köszöntelek a A Csodálatos Világűr-és a Föld közösségi oldalán!
Csatlakozz te is közösségünkhöz és máris hozzáférhetsz és hozzászólhatsz a tartalmakhoz, beszélgethetsz a többiekkel, feltölthetsz, fórumozhatsz, blogolhatsz, stb.
Ezt találod a közösségünkben:
Üdvözlettel,
A Csodálatos Világűr-és a Föld vezetője
Amennyiben már tag vagy a Networkön, lépj be itt:
Szeretettel köszöntelek a A Csodálatos Világűr-és a Föld közösségi oldalán!
Csatlakozz te is közösségünkhöz és máris hozzáférhetsz és hozzászólhatsz a tartalmakhoz, beszélgethetsz a többiekkel, feltölthetsz, fórumozhatsz, blogolhatsz, stb.
Ezt találod a közösségünkben:
Üdvözlettel,
A Csodálatos Világűr-és a Föld vezetője
Amennyiben már tag vagy a Networkön, lépj be itt:
Kis türelmet...
Bejelentkezés
1.2.3. A fénysebesség mérési módszerei A fénysebesség óriási értéke miatt a mérhetőségnek az a feltétele, hogy a mérés alatt a fény elég nagy (pl. csillagászati) távolságokat fusson be, illetve hogy kis (földi) távolságok esetén a technika elég fejlett legyen ahhoz, hogy kis időtartamokat is mérni tudjanak. Az első mérés Olaf Römer dán csillagász nevéhez fűződik, aki 1676-ban a Jupiter holdjainak fogyatkozási idejét tanulmányozta. Azt mérte meg, hogy a holdak, miközben a bolygó körül keringenek, mennyi időt töltenek a bolygó árnyékában. Römer úgy találta, hogy amikor a Föld az ábra szerinti A helyzetben van a J1 Jupiterhez képest, illetve amikor a Föld és a Jupiter C és J2 helyzetben van, akkor valamivel több, mint 10 perces különbség van a hold eltűnése és felbukkanása között.
Ennek megmagyarázásához feltételezte, hogy a fény véges sebességgel érkezik a Jupitertől a Földre, és mivel a Föld C-ben van legmesszebb a Jupitertől, a megfigyelt késés az az idő, ami a fénynek a többlet út megtételéhez szükséges. Mérései alapján 1000 másodpercre becsülte az időt, ami alatt a fény a Föld pályájának átmérőjével megegyező távolságot megteszi. Ebből a mérésből (akkoriban a földpálya sugarát sem ismerték pontosan) a fénysebesség ma ismert értékénél mintegy 30%-kal kisebb értéket kapott. A fénysebesség mérése földi fényforrások alkalmazásával és francia fizikus már a 19. század közepén megközelítőleg pontosan megmérte a fény sebességét földi körülmények között. A rendkívül kis időtartamok méréséhez forgó fogaskereket illetve tükröt alkalmaztak.
Fizeau mérésének elvi elrendezése az alábbi ábrán látható. A fénynyaláb egy fogaskerék fogai között halad át, majd egy tükörről az l távolságra (Fizeau mérésekor l=8633 m volt) elhelyezett tükörre esik, arról pedig visszaverődik az eredetivel párhuzamosan elhelyezett másik fogaskerékre. Ha a fogaskerék fordulatszámát megfelelően állítják be, ezalatt éppen egy fognyit halad előre, ezért a fény nem jut a megfigyelő szemébe. A fordulatszám és a megtett 2l távolság pontos ismeretében ebből a fénysebesség meghatározható. Mérései során Fizeau 314 000 km/s értéket kapott.
Foucault kísérletében két, egymástól 20 m-nyire felállított tükröt használt. Az egyik tükör rögzített volt, míg a másik másodpercenként 800 fordulatot tett meg. Foucault fénysugarakat irányított a forgó tükörre. Ha a fénysugár a megfelelő szögben érte el a tükröt, visszaverődött a rögzített tükörre, onnan vissza a forgó tükörre, végül a fényforrásra. A tükrök közötti visszaút megtételéhez szükséges idő alatt a forgó tükör parányi szögben elmozdult, így a fényforráshoz visszatérő sugár útja kissé eltért az eredeti úttól.
Foucault kísérleti módszerét az 1920-as években amerikai fizikus fejlesztette tovább: a fénysugarat 1,6 km hosszú vákuumcsövön bocsátotta keresztül, hogy kiküszöbölje a levegőnek a fénysebességre gyakorolt hatását. Habár ma már a Michelson által kapott legjobb értékek pontosságát is felülmúlták a rádiófrekvenciás technikán alapuló új módszerekkel kapott értékek, mérései mai szemmel is figyelemre méltóak. Michelson különböző, 8, 12 és 16 oldalú tükröket használt, amelyeket légbefúvás működtette olyan sebességgel, hogy az alatt az idő alatt, amíg a fény az T2 tükörig és visszaért (0,000 23 s), a tükör olyan szögben fordult el, hogy a következő felület az A' pontban jelent meg. A nyolcoldalú tükör esetén a megfelelő forgási sebesség körülbelül 528 ford/s volt. Ezt a sebességet egy ellenirányú fúvókával állították be, amíg a rés képe ugyanabba a helyzetbe nem került, mint amikor F nyugalomban volt. Az 1926-ban publikált mérési eredmények nyolc féle fénysebességértéket tartalmaztak, amelyek mindegyike nagyjából 200, adott forgótükörrel végzett, önálló mérés átlaga. Ezek a 299 756 és a 299 803 km/s-os számértékek között szóródtak, és 299 796 ± 4 km/s-os átlagértéket adtak.
Michelson kísérletében a fény áthaladt egy vékony résen, majd visszaverődött az F nyolcszögű forgótükör egyik oldaláról. Ezután a B és C rögzített kis tükrökről visszaverődött a nagy T1 konkáv tükörre (10 m-es fókusz, 60 cm-es nyílás). Ez olyan párhuzamos fénysugarat eredményezett, amely 35 km-t tett meg a Wilson-hegyen lévő megfigyelő állomástól a San Antonio-hegy csúcsán elhelyezett T2 tükörig. A T2 egy kis síktükörre fókuszálta a fényt, amely újabb visszaverődések után jutott a megfigyelő okulárhoz |
|
|
E-mail: ugyfelszolgalat@network.hu
Kommentáld!